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In this work, an analytical equation of state based on statistical mechanical
perturbation theory, which was initially developed for normal fluids and can
be applied to predict the P –V –T data for saturated liquid alkaline earth met-
als, is presented. The equation of state is that of Ihm, Song, and Mason, and
the temperature-dependent parameters of the equation of state are calculated
from a corresponding-states correlation as functions of the reduced tempera-
ture. Two scaling constants are sufficient for this purpose, the surface tension
and the liquid density at the melting point. The equation of state is used to
predict the saturated liquid density of molten alkaline earth metals from the
melting point up to 2000 K, for which experimental data exist, within an
accuracy of 5%.
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1. INTRODUCTION

Accurate knowledge of the mechanical behavior of fluids using equations
of state is always valuable in thermophysical studies. Among the proposed
equations of state by different investigators, a few are analytical and have
been established on a theoretical basis. Although many attempts have been
made to make progress in this field, the lack of a proper universal poten-
tial energy function still leaves many unsolved problems.

In this work, an analytical equation of state based on statistical
mechanical perturbation theory proposed by Song and Mason [1] is of
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special interest. Three temperature-dependent parameters arise in this
equation of state: the second virial coefficient, B2, an effective hard-sphere
diameter, b, and a scaling factor for the pair distribution function, α.
The first parameter is often available experimentally, and the other two
parameters can be calculated by fitting the second virial coefficients to
a simple potential energy function and using empirical formulas [2] or
numerical tabulated results by Song and Mason [3]. This fact leads to
a law of corresponding-states developed by Ihm et al. [3] that reduces
the entire P –V –T surface of a normal fluid to a single curve of the
effective pair distribution function at contact as a function of reduced
density.

If the second virial coefficients are not known experimentally, there
are several corresponding-states correlations by which the second virials
can be calculated as a function of temperature with reasonable accuracy.
Boushehri and Mason [4] developed a method for predicting the second
virial coefficients, and hence the equation of state, from the heat of vapor-
ization as the energy parameter for reducing temperature and the liquid
density at the triple point as the size parameter for reducing second viri-
al coefficients. In this method, the scaling parameters, the heat of vapor-
ization and the liquid density at the triple point, are readily available at
ordinary temperatures and pressures. Another correlation was proposed by
Ghatee and Boushehri [5] to predict the equation of state for liquids from
the surface tension and the liquid density at the freezing temperature. The
accuracy of densities they predicted was about that of Tao and Mason [6],
based on using the critical constants, but they removed the difficulty of
rarely available critical constants.

In this paper, we adapt the correlation procedure by Ghatee and
Boushehri [5] to calculate the temperature-dependent parameters of the
equation of state for saturated liquid alkaline earth metals (Mg through
Ba). It is shown that this procedure leads to an analytical equation of
state which can predict the saturated liquid density of these metals from
the melting point up to several hundred kelvins above the boiling point
within ±5%.

2. THEORY OF THE EQUATION OF STATE

Statistical mechanics provides us with the following equation, assum-
ing a pair-wise additive central intermolecular potential [7],

P

ρkT
=1− (2πρ/3kT )

∞∫
◦

(∂u/∂r)g(r)r3 dr (1)
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where P is the pressure, ρ is the density, g(r) is the pair distribution func-
tion, and ∂u/∂r is the derivative of the intermolecular potential, u(r), with
respect to distance, r. Applying the Weeks–Chandler–Andersen division
for the potential energy function [8], Ihm et al. [3] derived the following
equation,

P

ρkT
=1+B2ρ +αρ[G(bρ)−1] (2)

Here B2 is the second virial coefficient, α is the repulsive contribution to
the second virial coefficient, G(bρ) is the average pair distribution function
at contact for equivalent hard spheres, and b is the analog of the van der
Waals covolume and can be calculated from α by the following equation,

b=α +T
dα

dT
(3)

All of the temperature-dependent parameters, B2, α, and b, can be written
in terms of the intermolecular pair potential as [1]

B2 =2π

∞∫
0

[1− exp(−u/kT )]r2 dr, (4)

α =2π

rm∫
0

[1− exp(−u0/kT )]r2 dr, (5)

and

b= 2
3
πd3 =2π

rm∫
0

[1− (1+u0/kT ) exp(−u0/kT )]r2 dr (6)

where d is the effective hard-sphere diameter and u0 is the repulsive
branch of u defined as [8]

u0(r)=
{

u(r)+ ε, r � rm,

0, r >rm,
(7)

Here, ε is the potential well-depth and rm is the position of the minimum
in u.

Ihm et al. [3] used the Carnahan–Starling equation for G(bρ) [9] and
performed a correction in Eq. (2) for the attractive forces to obtain

P

ρkT
=1− (α −B2)ρ

1+0.22λbρ
+ αρ

1−λbρ
(8)
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where λ is an adjustable parameter. From Eqs. (2) and (8), G(bρ) can be
written as

G(bρ)−1 = (1−λbρ)=αρ

[
P

ρkT
−1+ (α −B2)ρ

1+0.22λbρ

]
(9)

which immediately implies a principle of corresponding states, since plots
of G−1 vs. bρ yield very nearly straight lines with various slopes, −λ, for
different fluids [3].

As mentioned earlier, knowledge of accurate potential energy func-
tions or the experimental second virial coefficients are necessary for the
calculation of B2, α, and b in Eq. (8). But, for the second group elements,
neither an accurate potential function nor experimental values of B2(T )

are known. To calculate the second virial coefficient, we utilized a corre-
sponding-states correlation proposed by Ghatee and Boushehri [5], based
on the surface tension and the liquid density at the melting point for nor-
mal fluids. The correlation reads as

B∗
2 (T ) = 0.0804−2.1288T ∗−1 −8.5597T ∗−2

+7.4294T ∗−3 −3.3494T ∗−4 (10)

with

T ∗ =
[
T 3/2/(Tref T

1/2
m )

]3/4
, (11)

Tref = σmρ
−2/3
m N1/3

R
, (12)

and

B∗
2 =B2(T )ρm (13)

where σ is the surface tension, N is Avogadro’s number, R is the universal
gas constant, and the subscript m refers to the melting point. Ghatee and
Boushehri [5] rescaled the empirical formulas by Song and Mason [2] for
α and b to obtain the following equations:

αρm =a1
[
exp

(−c1T
∗)]+a2

[
1− exp

(
−c2(T

∗)−1/4
)]

(14)

and

bρm = a1
[
1− c1T

∗] exp
(−c1T

∗)
+a2

[
1−

(
1+0.25c2(T

∗)−1/4
)

exp
(
−c2(T

∗)−1/4
)]

(15)
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where
a1 =−0.01054 c1 =0.7613
a2 =2.9387 c2 =1.3227
In this work, we will use the correlations of Eqs. (10) – (15) to calculate
the temperature-dependent parameters of the equation of state.

3. RESULTS AND DISCUSSION

We have used Eq. (8) for the calculation of the liquid density of alka-
line earth metals. The temperature-dependent parameters, B2, α, and b,
are calculated using Eqs. (10)–(15). Knowing the temperature-dependent
parameters of the equation of state, one parameter remains, λ, which can
be calculated by knowing experimental P –V –T data. Once the value of
the constant λ is determined, the entire volumetric behavior of the fluid
is established. Values of λ, obtained from regression of experimental data,
as well as the surface tension and liquid densities at the normal melting
point for alkaline earth metals, are given in Table I.

We have calculated the saturated liquid densities of Mg, Ca, Sr, and
Ba from the melting point up to 2000 K, for which experimental data are
reported by Bystrov et al. [10] as correlating equations. The results are
listed in Table II and are compared with experiment [10]. Although the
results listed in Table I show the degree of consistency between our model
and experimental data, the results for magnesium as a typical example are
also shown in Fig. 1, on which any deviation pattern is more obvious.
Since the present equation of state is based on a mean-field approxima-
tion, it does not work accurately in the two-phase and nonanalytical crit-
ical region. Therefore, we can not accurately calculate the vapor-pressure
curve via the present equation of state.

In summary, an equation of state for alkaline earth metals was devel-
oped based on statistical mechanical theory. The temperature-dependent
parameters were calculated from the extrapolation of normal fluids’ cor-
responding-states correlations to the metallic region. The fact that the

Table I. Parameters used for Alkaline Earth Metals [10]

Metal Tm (K) ρm (mol · L−1) σm (N · m−1) λ

Mg 923 65.4186 0.5770 0.456
Ca 1114 34.3782 0.3248 0.438
Sr 1041 26.8105 0.2896 0.434
Ba 1000 24.3010 0.2665 0.428
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Table II. Comparison of Calculated and Experimental [10] Values
of Liquid Densities

Density (mol · L−1)

T (K) P (bar) Calc. Expt. Dev (%)

Magnesium
923 3.586 × 10−3 64.37 65.42 −1.60

1000 1.483 × 10−2 64.37 64.60 −0.36
1100 6.288 × 10−2 64.06 63.36 1.10
1200 0.207 63.43 62.54 1.42
1300 0.5616 62.54 61.30 2.02
1400 1.309 61.45 60.07 2.29
1500 2.705 60.23 59.25 1.65
1600 5.070 58.95 58.01 1.62
1700 8.774 57.63 56.78 1.50
1800 14.21 56.31 55.96 0.62
1900 21.77 54.98 54.72 0.47
2000 31.82 53.66 53.90 -0.44

Calcium
1114 2.056 × 10−3 34.94 34.45 1.42
1200 6.876 × 10−3 34.57 33.95 1.83
1300 2.307 × 10−2 34.01 33.38 1.88
1400 6.470 × 10−2 33.36 32.80 1.71
1500 0.1572 32.66 32.23 1.33
1600 0.3401 31.93 31.65 0.88
1700 0.6688 31.18 31.08 0.32
1800 1.215 30.44 30.50 −0.19
1900 2.066 29.70 29.93 −0.76
2000 3.321 28.96 29.35 −1.33

Strontium
1041 2.504 × 10−2 27.68 26.81 3.24
1100 6.069 × 10−2 27.56 26.79 2.87
1200 2.204 × 10−2 27.25 26.67 2.17
1300 6.491 × 10−2 26.83 26.46 1.40
1400 0.1621 26.33 26.19 0.53
1500 0.3554 25.79 25.88 −0.35
1600 0.701 25.23 25.55 −1.25
1700 1.267 24.65 25.21 −2.22
1800 2.133 24.08 24.86 −3.13
1900 2.381 23.50 24.51 −4.10
2000 5.093 22.99 24.16 −4.84

Barium
1000 7.055 × 10−5 25.48 24.30 4.86
1100 3.931 × 10−4 25.28 24.08 4.98
1200 1.615 × 10−3 24.96 23.87 4.57
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Table II. (Continued)

Density (mol · L−1)

T (K) P (bar) Calc. Expt. Dev (%)

1300 5.264 × 10−3 24.54 23.65 3.76
1400 1.432 × 10−2 24.05 23.43 2.65
1500 3.373 × 10−2 23.53 23.21 1.38
1600 7.081 × 10−2 22.99 22.99 0.00
1700 0.1353 22.45 22.78 −1.45
1800 0.2393 21.91 22.56 −2.88
1900 0.3970 21.38 22.34 −4.29
2000 0.6239 20.84 22.12 −5.78

Fig. 1. Comparison of calculated ( ) and experi-
mental (—) saturated liquid density of magnesium
vs. temperature.

second virial coefficients of metals obey the law of corresponding states
may be unexpected. However, Eqs. (10)–(15) for B2, α, and b based on
a corresponding-states correlation with the surface tension and the liquid
density at the melting point as scaling constants can produce relatively
accurate results. Of course, some of the errors in this procedure can be
compensated by adjusting the parameter λ by fitting experimental P –V –
T data. This work indicates that only two characteristic constants, the liq-
uid density and the surface tension at the melting point, are sufficient to
predict the liquid density of alkaline earth metals, without knowing the
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whole potential energy curve or the experimental second virial coefficients
of these metals.
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